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Abstract —A new design method is proposed for a planar dielectric
. waveguide Y branch with low loss caused by radiation. In contrast to the
usual design methods, in which the generation of the radiation wave is
kept as small as possible, the present method positively uses, for the
first time, the behavior of such a radiation wave, We intentionally
generate the radiation wave at any local position along a taper section of
the Y branch, and its power conversion and reconversion with the
surface-wave mode are controlled to reduce the insertion loss for the
surface-wave mode.

A design example shows that the low-loss Y branch should have a
serpentine taper, which is an unexpected shape from the usual design
point of view. The effectiveness of our design method presented here is
confirmed by comparing the numerical results with those of the usual
types of Y branches and with measurements.

I. INTRODUCTION

LANAR circuits based on open dielectric waveguides

have become increasingly important in the past few years
in connection with integrated circuits ranging from millime-
ter-wave to optical frequencies. Of these circuits, the Y
branch is one of the basic but most important devices. It is
used not only as a power divider and combiner, but also in
the active devices for light-intensity modulation and switch-
ing. However, the guided wave on a Y branch always loses
energy by radiation because of the discontinuous feature of
branch structures. Such radiation causes serious problems in
circuit performance because of, for example, the undesired
power coupling, or crosstalk, with neighboring circuits. Such
an effect becomes significant in the millimeter-wave region,
because branch circuits must be designed to be as compact
as possible to the wavelength even if the junction angle
becomes large and the dielectric constant ratio between the
core and the surroundings increases.

Many approximate approaches have appeared so far.
Sasaki et al. [1] estimated radiation loss by neglecting the
strong coupling between the branching waveguides in the
vicinity of the junction. Burns es al. [2] and Yajima [3]
calculated mode conversion between the guided modes by

Manuscript received February 26, 1990; revised July 27, 1990. This
work was supported in part by the Ministry of Education, Science and
Culture of Japan under a Grant-in-Aid for General Scientific Research
(63550261).

M. Tsuji and H. Shigesawa are with the Department of Electronics,
Doshisha University, Karasuma-Imadegawa, Kamikyo-ku, Kyoto, 602
Japan.

O. Tanaka was with the Department of Electronics, Doshisha Univer-
sity, Kyoto, 602 Japan. He is now with Hitachi Ltd., Tokyo, Japan.

IEEE Log Number 9040558.

the approximate step theory of Marcuse [4], which assumed
an approximate orthogonality of modes on one side of an
infinitesimal step to the modes on the other side. The
volume current method [5] is also an approximate method
for calculating the radiation loss. Furthermore, numerical
solutions by the beam-propagation method were considered
in [6]. Also, certain techniques have been discussed for
reducing the insertion loss of curved waveguides [7] and Y
branches [8]. None of these studies, however, discussed the
design problems of Y branches from the point of view of the
accurate behavior of both the surface-wave mode and the
radiation wave. They understood that, once the radiation
wave is generated, it is scattered to the surroundings and
cannot be used in devising low-loss Y branches. According to
this view, a low-loss Y branch may be obtained only when
the taper shape changes smoothly so that the input surface-
wave mode can couple to the radiation wave as little as
possible. This idea usually requires a large dimension to the
wavelength for the nonuniform taper section, and such a Y
branch will not be practical in the millimeter-wave region.

This paper develops, for the first time, a design method of
Y branches with amazingly reduced loss from radiation. In a
new type of Y branch, the radiation wave is intentionally
generated along the taper and is controlled so that it can
play an important role in reducing radiation loss (theoreti-
cally realizing zero loss).

II. THEORETICAL APPROACH
A. Physical Consideration

Fig. 1 illustrates the Y branch considered in the analysis.
For simplicity, the structure is assumed to be uniform in the
x direction, and the fundamental TE, sltab surface-wave
mode is incident from left-hand side of the waveguide, as
shown. Also, the separation of the output guides II and 11 is
assumed to be sufficiently wide so that their effect on each
other can be neglected. We assume further that each guide
can support only the fundamental surface-wave mode.

In general, the electromagnetic field in a uniform dielec-
tric waveguide of the open type can be expressed completely
by the constituent fields of both the surface-wave modes and
the radiation wave (a continuum of modes with the continu-
ous spectrum) [9]. The constituent fields do not couple with
each other as long as a waveguide is uniform along the
propagation direction. However, if a waveguide becomes
nonuniform and /or has discontinuities, power coupling oc-
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Fig. 1. General configuration of dielectric waveguide Y branch. The
structure is uniform in the x direction. The nonuniform structure lies
between the terminal planes 7 and T,, which are_ connected to the
input waveguide 1 and to the output waveguides II, TI, respectively.
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Fig. 2. Conceptual variation of the transmitting power of the surface-
wave mode across a plane perpendicular to the z axis.

curs between surface-wave and radiation modes. Papers pre-
viously published have considered that a low-loss Y branch is
obtained only when the transmitting power of the surface-
wave mode is lost gradually along the taper axis and drops
monotonically to a certain amount at the output end, marked

T, as shown conceptually by the dashed curve @ in Fig. 2.
This understanding is not correct, as explained below, when
a Y branch in the millimeter-wave region is concerned.

It is obvious that the surface-wave mode on a practical Y
branch propagates toward the output end, successively re-
peating, to a greater or lesser degree, the necessary power
conversion and reconversion with the radiation modes as
well as with the surface-wave mode. Then, it is expected that
the power of the surface-wave mode will no longer not
change monotonically but rather in a more complex manner.
Certainly, a numerical example for the practical linear-taper
Y branch discussed in Section III exhibits such a power

change, not like curve @ but like curve in Fig. 2.

Curve in Fig. 2 shows a sudden power conversion into
the radiation modes near the input end, and then the power
of the radiation modes is again reconverted gradually into
the surface-wave mode as they propagate. But, the power
drop of the surface-wave mode at the output end T, is
inevitable because a taper shape is decided a priori. There-
fore, such a Y branch is always accompanied by a loss due to

aQ
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Fig. 3. Step approximation for dielectric waveguide Y branch. Its
original shape is indicated by the smooth curve. (The sketch is exagger-
ated.)

radiation. However, we can obtain a Y branch with theoreti-
cally no loss from radiation when the taper shape is designed
so as to control intentionally the intensive power conversion
and reconversion. This will transform part of the ‘input
surface-wave mode into the radiation modes with complete
control, and we can finally obtain only the desired surface-
wave mode in the output waveguide, while ‘the undesired

. reflection is suppressed at the input end. In such an ideal

case, we may expect conceptually the power change shown
by the solid curve @ in Fig. 2.

B. Full-Wave Theoretical Approaéh

To control intentionally the power conversion and recon-
version, it is necessary to solve the wave behavior on a Y
branch from the viewpoint of a precise boundary-value prob-
lem. This is usually quite difficult for structures of the open
type. However, the method we have developed for the analy-
sis of discontinuity problems on open dielectric waveguides is
capable of solving this problem. The general approach- is
presented in [10], but a brief summary with some necessary
modifications is in order.

The basis of our approach is to describe the wave behavior
of the Y branch with a taper of arbitrary shape by a general-
ized equivalent network which is amenable to the ordinary
microwave-network method. For this purpose, we- approxi-
mate a Y branch by 4 number of infinitesimal step disconti-
nuities connected in tandem through a uniform dielectric
waveguide with a segment length A/, as shown in Fig. 3.
Such an approximated structure is then typically divided into
four building blocks as shown in Fig. 4. The first (Fig. 4(a)) is
the single homogeneous waveguide with guide width w;, the
second (Fig. 4(b)) is the step discontinuity on it, the third
(Fig. 4(c)) is the parallel homogeneous waveguide with guide
width w; and separation d;, and the last (Fig. 4(d)) is the step
discontinuity. '

Let us first consider homogeneous dielectric waveguides.
The mathematical development described hereafter ig valid -
for both part (a) and part (c) of Fig. 4 except for the
functional form of modal functions. Then in this .subsection
we assume a general case that M surface-wave modes and
the radiation modes polarized in the x direction are travel-
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Fig. 4. Four typical types of building blocks for the approximated
structure of Fig. 3: (a) the single homogeneous dielectric slab; (b) the
step discontinuity on the waveguide shown in (a); (¢) the parallel
homogeneous dielectric slab; and (d) the step discontinuity on the
waveguide shown in (c).

ing to the positive z direction. Then the total electric field
E(y,z) in the xy plane at an arbitrary z position is com-
pletely expressed! by the following equation [10]:

) M—1
E(y,2)= L Ap(2)em(y) |

m=0

fn”k“f(p,Z)e (y,p)dp

angky
+[ g(p,z)e(y,p)dp,

noko

(1)

where e,,(y) and e, (y,p) are the orthonormal modal func-
tions of the mth surface-wave mode -and the radiation mode
with the transverse wavenumber p in the y direction outside
the dielectric, respectively. The functional forms of these
modal functions do not change as they propagate along a
homogeneous waveguide, but their complex root-power am-
plitude A4 ,(z) and the continuous spectral amplitudes f(p, z)
for propagating radiation modes (0 < p <nyk,) and g(p,z)
for nonpropagating radiation modes (ny,k; < p <anyk,) do
change. The change in each complex amplitude of surface-
wave modes is easily pictured by the simple network model
consisting of an uncoupled transmission line, even for a
dielectric waveguide of the open type. Such a network model
is not valid for radiation modes at all, because each radiation
mode is not an eigenmode and its power intensity is indefi-
nite.

Nevertheless, we intend to initiate a network model effec-
tive for radiation modes consistent with the network model
for surface-wave modes mentioned above. To this end, let us
expand the spectral functions f(p, z) and g(p, z) into (prac-
tically truncated) series of the orthonormal functions ¢,(p)
and ¢,(p) defined in their own p regions with the unknown
coefficients A4,,.,(z) and Ay v, (2), (n=1,2,--+ N), re-
spectively, as seen in [10]. Then we can recompose the

"Here « is an optimally chosen parameter to limit the branch-cut
integral in practical cases (see [11] for details).

radiation modes. to have a discrete set of an infinite number
of spectral composite modes, defined by

Een(y) = fon“k"%(p)ex( v,p)dp

anyk

een(¥) = f Yu(p)e(y.p)dp. (2)

ngky

We can rewrite the total electric fields E,(y, z;) of (1) on the
planes at z = z; (i = 1,2), and they are completely expressed
by the following equations:

M—1 N-—1 :
Ex(yﬂzl)= Z Am(zl)exm(y)+ Z [AMJrn(Zl)éxn(y)

m=0 n=10
+ AM+N+n(Z])éxzz(y)] (3)
N~
E (y 22)_ Z()B (22)exm(y)+ Z [BM+n(22)exn(y)
+ Bprnan(22)€0n(¥)]. (4)

As is well known, the amplitude B, (z,) is related to A4,(z,)
by B,(z,)=A,(z)exp(—jB,d), where B, is the phase
constant of the mth surface-wave mode, and d = z, — z,. In
contrast to this, the complex amplitude, for example,
Az} of the nth spectral composite mode, changes. as it
propagates and there is no longer a one-to-one correspon-
dence between Ay, and By, or Ay, and By y .y,
Instead, one of the input spectral composite mode on a local
plane at z = z, necessarily couples with all of the propagat-
ing or nonpropagating output spectral composite modes on a
different local plane at z = z,. As a result, with have the
following relations:

N-—1
BM-HI(ZZ)_ Z()Snp(d)AM-f—p(Zl) (5)
N-—1 .
BM+N+)1(ZZ)= Z Sizp(d)AM+N+p(zl) (6)
p=0

where

Sun(d) = [""'6,(p) 0 () exp (= iB(p)d) dp  (7)

Supl @)= [ 0) (P exp (= v(p)d) dp. (8)

ngky

The guantities B(p) = \/(n(,k(,)z— p? and y(p)=jB(p) are
the phase constants of the propagating and nonpropagatmg
radiation modes, respectively.

If any field distribution given at z — z, propagates in the
negative z direction, the resultant field at z =z, can be
expressed by relations (5) and (6). The equivalent nétwork
for a homogenecous diclectric waveguide of length d can be
represented by Fig. 5, of which terminal amplitudes are
governed by the § matrix [ S| yg] (see [10, appendix I1]).

Next, let us derive the § matrix for the equivalent network
of a step discontinuity between the two semi-infinite homo-
geneous waveguides shown in parts (b) and (d) of Fig. 4 on
the basis of the spectral composite modes in conjunction
with surface-wave modes. We consider that one of these
modes is incident from the left-hand side (guide L) or the
right<hand side (guide R). An example of such excitation is -
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Fig. 5. Equivalent network representation for the homogeneous slab

waveguide, where the scattering matrix [$ gl consists of the three
elementary matrices [$}, [S], and [ S], corresponding, respectively, to the
surface-wave modes, the propagating spectral composite modes, and the
nonpropagating spectral composite modes.

the incidence of the gth surface-wave mode from the left-
hand side. Then, the electric fields tangential to the disconti-
nuity plane can be expressed as follows:

M+2N-1

Ex(v,0.)= X (8,,+ Ry )ery(v) 9
p=0
M+2N-1

EX(y,0.)= X T,.e8(y) (10)
p=0

where the function e, (y) (i=L or R) denotes the modal
functions for the surface-wave modes, and the propagating
and nonpropagating spectral composite modes on the guide
L or R, corresponding to the particular range of the sub-
script number p. The unknown coefficients R, and T,,

(9) and (10) are then solved by the mode- matchlng method to
fulfill the boundary condition on the junction plane in the
sense of least mean squares [10]-[12]. Applying the same
procedure to all of the other excitation cases, one can obtain
all of the unknown coefficients R,, and T,, which are
linked with the elements of the step-discontinuity matrix
[Ssrepl (see [10, appendix III]). As a result, a step disconti-
nuity can be expressed by the equivalent network of Fig. 6,
which again has the terminal ports corresponding to each of
the surface-wave and spectral composite modes.

Let us go back to the problem of Fig. 3. This approximated
structure for Fig. 1 is understood as the cascade connection
of all of the building blocks shown in Fig. 4, and the
complete equivalent network can be expressed as shown in
Fig. 7. When the TE, fundamental surface-wave mode is the
only mode incident from the left-hand side of the structure
(as shown), all of the terminal ports, except for the input
port of the incident surface-wave mode, should be termi-
nated properly by the corresponding characteristic impedance
of each surface-wave mode or each spectral composite mode
(see [10, appendix 1V]).
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Fig. 6. Equivalent network representation for the step discontinuity
shown in Fig. 4(b) or (d).

The network parameters expressing completely each of the
elementary networks can be controlled by varying each of the
guide widths w,, the separation widths of parallel waveguides
d,, and the segment lengths A/, (i=1,2,---,K). As was
assumed at the beginning of this paper, the only surface-wave
mode on each output waveguide II or II is approximately the
TE, mode, so that the surface-wave field on the branched
output waveguide is mathematically expressed by the funda-
mental even TE-surface-wave mode on a parallel dielectric
slab. The insertion loss between input and output surface-
wave modes is then expressed as a function of the variables
{w,d,,Al} (i=1,2,---,K), and they are solved by minimiz-
ing (ideally by making zero) the insertion loss at a given
frequency by using a nonlinear optimization procedure. In
this calculation, we set the constraint conditions that the
resultant field transforms only into the desired surface-wave
mode on the output waveguide with zero insertion loss, while
keeping the total length L of the Y branch and the separa-
tion width D of two waveguides at the output end constant.

II1. NumEericaL RESULTS AND EXPERIMENTS

In this section, we design a low-loss Y branch and com-
pare the numerical results first with those of usual types of Y
branches, and then with some measurements that we took.
In a practical design, we fix all of the guide widths w; to W
and the separation width D at the output end to 10W. For
the sake of experimental convenience, a design is tried at the
X band, by using polyethylene (e, =2.25) as a dielectric
material.

First, to check the validity of a step approximation for a Y
branch, the number of steps K is varied in the calculations
of the reflection power, the branching transmission power of
the surface-wave mode, and the forward and backward radi-
ation powers. Parts (a) and (b) of Fig. 8 show the results for
the linear-taper Y branch given by L =15W and kW =1,
where k,=2m /A, It is obvious from this example that the
calculated results almost converge when K > 48. Therefore,
the calculations below are performed with K =48. A total
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Fig. 7. Equivalent network representation for dielectric waveguide Y branch with an arbitrarily shaped taper. The network

parameters are controlled by varying each guide width w,,
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Fig. 8. Convergence check of the calculated powers as a function of
the number of steps K for the linear-taper Y branch with the dimension
of L/W=15 and kW = 1. (a) The powers of the surface-wave mode.
(b) The powers of the radiation wave.

power conservation of greater than 99.5% is then obtained in
the calculations.

Next, we synthesize a low-loss Y branch at kW =1 by
varying each of the segment lengths A/, while keeping L =
15W. The lengths A/, are then solved by the modified
Newton iteration method. Fig. 9(a) shows the Y branch

the separation width of parallel waveguides d;, and segment

L 15w ]
(a)
100— —
w &
%
]
39
S 0
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EWn
€ Beot :;::8 ~—" ——- Linear Taper
§ S kW=1.0 —— Serpentine
L/W= 15,D/W=10l o Taper
0 05 10
z/L
(b

Fig. 9. Characteristic features of the low-loss Y branch synthesized at
koW = 1. (a) Configuration of the low-loss Y branch (not exaggerated,
but enlarged in its scale). (b) Curve of the calculated power change of
the surface-wave mode with the comparative one for the linear-taper Y
branch.

synthesized at 9.55 GHz (which corresponds to kW =1
when W =35 mm). This configuration consists of the serpen-
tine taper and the abrupt step at both input and output ends.
This result indeed seems to be an unexpected one from the
usual design point of view, but the prudential physical con-
sideration explains that this result is certainly consistent with
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Fig. 10. (a) External view of a synthesized Y-branch for test and
(b) curves of the insertion loss as a function of frequency for the
synthesized Y branch and for the linear-taper Y branch. The optimum
design is performed at f=9.55 GHz.

insertion Loss
3\

our original idea. For example, the solid curve in Fig. %b)
shows the calculated power change of the local surface-wave
mode for the synthesized Y branch, while the dashed curve
shows that for the linear-taper. Y branch which has the same
dimensions as Fig. 9(a) except that the serpentine taper is
replaced by a linear taper. As expected, the synthesized Y
branch certainly improves the power drop of the surface-wave
mode  at the output end, and exhibits the low-loss nature.
But, the solid curve is somewhat different from that of the

ideal case @ in Fig. 2 and there is a small amount of
residual loss. This can be removed when each of the guide
widths w; is also considered as a variable along with Al; and
the taper is approximated by a larger number of segments in
the design procedure. However, the computing time in-
creases, and the design cost becomes a bit high.

We performed a set of measurements on a synthesized Y
branch at f=9.55 GHz. The dielectric was polyethylene,
with n, = 1.5; the guide width W was 5 mm, the length of the
taper section was.L =15W =75 mm, and the branch was
made by a numerically controlled machine. This test branch
was placed in a parallel-plate waveguide with separation of
8 mm to simulate a two-dimensional structure. An external

view of a synthesized Y branch for test is shown in Fig. 10(a).

Fig. 10(b) shows the measured insertion loss characteristics

11

(dB)
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Lo

insertion
H»
L

/ ’/ o © o B Experiment
|
6 - i 1 o,
10 20 - 30
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Fig. 11. Calculated and measured insertion loss as a function of the
normalized taper length L /W for the Y branches with the linear taper
@, the raised-cosine tz{per @, and the integrated raised-cosine taper

@ . The square mark on L /W =15 indicates the-inscrtion loss of the
synthesized Y branch. ‘

as a function of frequency. The dotted circles indicate the
calculations for the Y branch of Fig. 9(a), while the solid
curve shows the measured characteristic. It is seen that the
agreement is excellent and the fractional power of 93% of
the input surface-wave mode is transmitted to the surface-
wave mode on the output waveguides. This corresponds to
an insertion loss of about 0.32 dB at f = 9.55 GHz. Fig. 10(b)
also presents another set of calculations and experiment.
The single circles indicate the calculation for the linear-taper
Y branch which has the same dimension with that of Fig.
9(a). In this case, the insertion loss at f =9.55 GHz is about
0.85 dB, which is 2.7 times worse than the insertion loss of
the serpentine taper Y branch. We can also confirm that the
serpentine taper Y branch shows low-loss characteristics
over a wide frequency range, although the optimization: is
performed at the frequency f =9.55 GHz.

We have also investigated the Y branches with the raised-
cosine and integrated raised-cosine tapers for which the first
and the second derivatives are continuous at the junction
points, respectively. These are often used in the optical
region. Fig. 11 shows the calculated and measured character-
istics of the insertion loss as a function of the normalized
taper length L /W along with those for the linear-taper Y
branch. For ‘comparison, the measured loss of the synthe-
sized low-loss Y branch at L /W =15 is also shown by the
square mark. It is seen from these results that the radiation
loss of the raised-cosine and integrated raised-cosine taper Y
branches is much larger than that of the linear taper when
they are designed compactly to the wavelength, for example,
in the region of L /W < 20. This is understood from the fact
that, since the design idea of such Y branches undertakes
only a smooth mode conversion between surface-wave modes
on the input or the output waveguide and those on the taper
section. A larger loss is inevitable when the total length of a
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Fig. 12. TField intensity distribution around the taper section when only the surface-wave mode is incident from the — z
direction and L / W = 15: (a) The synthesized serpentine taper Y branch; (b) the linear-taper Y branch; (c) the raised-cosine
taper Y branch; and (d) the integrated raised-cosine taper Y branch.

Y branch is shortened and the bend around the junctions
becomes sharp.

The low-loss nature of the serpentine taper Y branch is
also confirmed from the wave behavior around the taper
section, Fig. 12(a) shows the field intensity distribution for
the serpentine taper Y branch with L /W =15, while parts
(b), (¢), and (d) of Fig. 12 show the distributions for the Y
branches with linear taper, raised-cosine taper, and inte-
grated raised-cosine taper of the same L / W, respectively. It
is clearly seen that the serpentine taper Y branch smoothly
transforms the input surface-wave mode into the surface-
wave mode on the output waveguide with the help of the
local radiation wave, as we expected. In contrast to this, Y
branches with conventional tapers scatter the radiation wave
away from the Y branch. This tendency is remarkable for the
case of tapers with a smooth transition on their configura-
tions, such as the raised-cosine type tapers. Consequently,
the method proposed here can evidently be very effective for
designing low-loss Y branches in the millimeter-wave region.

IV. CoNCLUSION

Although two-dimensional structures are discussed here,
we have also been successful in applying the design method
developed here to practical three-dimensional dielectric-
waveguide (e.g., dielectric image-guide) Y branches with the
help of an unprecedented method for structural approxima-
tion [13]. It is obvious that the idea presented in this paper

can also be effective for devising low-loss branch components
in planar printed-circuit waveguides, for example, microstrip
lines, slotlines, and coplanar waveguides. These results will
be presented in a future paper.
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